
Chapter Five:  Future Work 

There are many open questions regarding the DDS data visualization technique.  This chapter 

outlines four lines of inquiry.   

 

1) Augmenting the DDS visualization toolkit with knowledge-based systems to aid users in 

creating visualizations of their data with DDS.  The DDS visualization toolkit enables users to 

interactively create DDS visualizations of multiple layers of data.  The user can interactively change 

each of the display parameters associated with a layer: the color, size and density of the spots, the 

layer order, and animation parameters such as the speed and direction of spot motion.  

 

2) Extending the DDS visualization technique to higher-dimensional data, such as volume 

visualization or visualization of data on a 3-dimensional surface, such as a geographical terrain. 

 

3) Investigating further the cognitive and perceptual issues surrounding DDS.  How do 

people interact with the DDS visualization system and what impact does real-time manipulation of 

the different parameter mappings have on understanding?  This is an interesting area from both a 

human-computer interaction viewpoint and a perceptual learning stance.   

 

4) Finally, animating DDS layers, which produces such a dramatic impact, is the most 

interesting and practical direction for future work.  I discuss animation first.   

 

Investigating Perception 

Visual Perception of Animated DDS Layers 

Investigating the effect of animating a DDS layer on its visual salience is not only the logical 

next step in the development and evaluation of DDS but also the most promising.  Although the DDS 

alpha-blended layers are robust in the presence of distractors, animation increases the visual salience 

of a layer so dramatically that it is tempting to expect that animation can significantly increase the 

maximum number of layers that can be discriminated with DDS, as well as improve the 

understanding that results.   
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Several initial questions regarding DDS animation are described below.  Because it is 

impossible to show the power of animated DDS layers with print medium, some examples of pre-

specified animations are provided on the CD included with this dissertation.   

 

How much does animation of a DDS layer increase its visual salience?  The intuitive answer, 

backed by many observations, is that animation greatly increases visual salience of a DDS layer.  

Picking out an object moving differently against a background of other moving objects has clear 

survival benefits.  Motion increases visual pop-out of an object and draws our attention to the object.  

Because the spots in a layer all move together as a unit, with the same direction and speed of motion, 

animation increases the perception that the spots form a coherent group.  Movie 1 illustrates these 

effects with uniform fields of spots. 

 

It would be interesting to explore how much animation increases visual salience of a layer 

through an experimental evaluation similar to the one described in Chapter Three.  I believe that if the 

target layers are animated, performance on the overlap estimate and intersection sketch tasks would 

be even less affected by the presence of distractors, and perhaps the number of possible distractors 

could be increased significantly.  Movie 2 presents an example of animated target layers from the 

Color-Color session in the main study.  Compared to the static image, animated targets are much 

more salient. 

 

Does animation change how many levels of transparency we can discriminate and therefore 

how many different levels of data we can perceive in a DDS layer?  While viewing DDS images of 

the SEM data, several people have remarked that the animation drew their attention to areas in the 

images where the data values were low in magnitude, which they had previously missed in the static 

images.  Movie 3 illustrates this with the climate data – during the month of August the Rocky 

Mountains in Colorado have measurable levels of ground-frost – this may go unnoticed in the static 

image, but once the ground-frost layer is set in motion the data stands out clearly.   

 

Animation attracts our attention to values with low magnitude that may go unnoticed in the 

static image.  Low data values produce faint spots – once the spots are set in motion they suddenly 

become more noticeable.  This does not mean that we could not see the faint spots before animation, 

just that they require less effort to see when moving.  It is interesting to note that, once the faint spots 

are made more salient with animation, the increased salience persists momentarily even when the 

animation stops. 
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Does animation improve our ability to see fine spatial details in the data, i.e. does it increase 

the perceived spatial resolution of DDS?  Again, observations of animated DDS images indicate the 

answer is yes.  In this example, animation revealed a small, isolated patch of data that was either not 

sampled due to the spacing of the Gaussian spots, or just not noticed due to its size and isolation.  

Movie 4 presents the bat habitat visualization shown in Chapter Two with the habitat range of the 

western red bat animated.  There is a small, isolated area where the western red bat has been sighted 

in the North-west near Seattle.  The area is small enough that it falls between spots and is not sampled 

in the static image.  Once the layer is animated, the area is alternately sampled and unsampled, which 

causes a flickering effect of on/off.  This is very noticeable; in fact, the isolated area was not noticed 

until the layer was animated. 

 

Animation also helps reveal details in boundaries of the data.  This effect is especially strong 

for large spots, within which the fine details of a boundary are well displayed, but between which 

perceptual filling-in of the boundary does not work well because the distance between large spots is 

too great.  Animation of large spots across a finely detailed boundary produces remarkable results – 

the impression it creates is that the entire scene is visible through large “holes” or windows.  Instead 

of the data being perceived as hidden or missing, it is as if one only has to shift one’s head slightly to 

see everything there is to see.  Movie 5 illustrates this with a SEM data layer. 

 

Consider the example with large spots shown in Movie 5.  If boundary information is 

revealed over time through animation, how long does the perception persist once the animation stops?  

How long must a viewer watch the animation to create an accurate mental model of the data that he or 

she can remember? 

 

What role does attention play when watching an animation?  Does attention influence how 

many layers can be animated at once without causing visual interference, or without confusing or 

distracting the viewer?  One of the powerful characteristics of visually discriminable DDS layers is 

that the viewer can attend to one or two arbitrarily chosen layers, temporarily ignoring others; the 

experimental results presented in Chapter Three show this conclusively.  In a static image, attention 

shifts are based on color, when animation is added to certain layers, attention shifts can be based on 

the speed and/or direction of motion.  If more than one layer is moving with the same speed and 

direction, color again becomes the discriminating factor.  Movie 6 shows the SEM visualization from 

Chapter Two, with two layers animated.  This animation illustrates how animation of two or more 

layers improves the perception of not just the animated layers, but of the static layers as well. 
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How well does animation help discriminate among spots with similar colors and sizes?  Can 

multiple layers with the same size and color be discriminated based on speed and/or direction of 

motion alone?  Movie 7 shows an example with the bat habitat ranges.   

 

Animated DDS layers can produce the perception of depth or of volume – how can this guide 

future data visualizations?  The perception of depth occurs in a display with several layers with the 

same color and direction of motion, but with different sizes and speeds of motion.  Movie 8 illustrates 

this effect – the result is like watching snow falling outside on a winter night. 

 

Does spot size influence how effective an animation can be?  Do some colors animate better 

than others?  Does an animation ever interfere, or mask the static layers? 

 

In addition to the linear, uniform-velocity animation shown in the movies provided, what 

other forms of motion are effective?  Rocking, scaling, speed that is data-dependent, random motion, 

coherent flock-like motion:  all are interesting areas of exploration. 

 

Perceptual Learning and Interaction with the DDS Visualization Toolkit 

What does exploration with the DDS visualization system teach the user about the data he or 

she is looking at? 

 

Does interaction produce better understanding?  Rheingans [1993] showed in her dissertation 

that interaction significantly increases a participant’s understanding of data.  It would be interesting to 

repeat the study presented in Chapter Three, with the participants able to choose the display mappings 

for the target and distractor layers interactively.  I would predict that performance would be better yet 

if this were the case. 

  

I have found interactive control of the display parameters to be invaluable when creating 

DDS images of data.  Interactively moving sliders to change the color, sizes, and animation 

parameters for each layer while seeing immediate results in the screen images, not only enables on to 

exert more precise control over the final image, but also reveals information in the data.   
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How do people experiment with the display parameters while creating visualizations of data 

with DDS?  What are the patterns of adding multiple layers to the visualization image?  Do people 

first create data mappings one layer at a time, waiting until all are created before looking at them 

overlaid in a single image, or do they add layers and readjust existing ones as they go?  When do 

people add animation to the visualization?   

 

What colors are used most often?  In the first experiment I chose to test pastel colors because 

they seemed similar in that none dominated much in brightness or visual attraction.  In creating 

visualizations of the SEM data sets I often choose jewel tones, and I seem to prefer dark blues and 

greens for some layers and bright yellows and pinks for other layers – when the parameter mappings 

are swapped I find the visualization unsatisfying in that I am unable to see the data as well as I think I 

should be able to.  Some characteristics about the data seem to influence the color I prefer to use, but 

it is unclear what those characteristics are or if the color preferences are viewer-dependent.   

 

Is color choice purely esthetic?  Do esthetics choices improve or hamper data understanding, 

or is there no relationship between the two?  Healey and Enns [2002] suggest that esthetics may in 

fact enhance understanding of the data.  Is the final visualization satisfying because it is pretty or 

because it is easy to parse the layers visually? 

 

Is there a difference between how a person uses the DDS visualization toolkit for data 

exploration and for data presentation?  How long does it take to become proficient in creating images 

of data with DDS?   

 

Figures 5.1 and 5.2 show different visualizations of the bat habitat range data created by two 

different people.  Does a person create similar visualizations for different data sets, or are his or her 

spot size choices and color preferences data-dependent?  People may find patterns that they prefer and 

always fall back on; I have a preference for saturated colors over pastels.  Do different people create 

similar or distinctly different visualizations of the same data set?   
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Visual Perception Investigations with DDS Alpha-Blended Layers 

The experiments described in Chapter Three investigate a very small subset of the perceptual 

issues surrounding DDS.  Although the results for the DDS alpha-blended layers were robust for up 

to nine data layers within an image, the results cannot be generalized to a wider class of data beyond 

simple geometric shapes and binary data.   

 

Many characteristics of the underlying data influence how data is best displayed with DDS.  

The intricacy of boundary information and the presence of noise are just two examples.  The example 

images presented in Chapter Two provide evidence that a wide range of data types can be effectively 

displayed with DDS, such as microscope, climate, and habitat range data.  However, a detailed 

investigation would provide a better understanding of the limitations and strengths of DDS.  Some 

questions are listed below. 

 

How many discrete levels in the data can be conveyed through transparency?  How does this 

change with multiple layers?  How do hue and spot size affect the number of levels of transparency a 

person can see?   

 

Human visual perception is hardwired to pick out boundary information in visual stimuli 

where boundaries may be difficult to see.  Our perception enhances edges so we can accurately detect 

objects and navigate our world.  Because boundary/edge detection is a specific mechanism of our 

visual perception system, it is interesting to ask how accurately people can see boundary information 

with DDS.  How does this change with multiple layers?  How much detail in the boundary can be 

seen?  What if the boundary smoothly transitions, for example a gradient?  What if the boundary is 

sharp?  How do hue and spot size affect the perception of boundary details? 
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Figure 5.1:  Bat habitat range for the following bats:  California leaf-nosed (blue), California myotis (red), 
Eastern red (pink), Greater Bonneted (dark green), Indian myotis (dark blue), Mexican free-tailed (cyan), Pallid 
(light green), Rafinesque’s big-eared (yellow, small spots), and Western red (yellow, large spots).   

 
Figure 5.2:  The same bat data, created by a different person.  Data mappings are:  California leaf-nosed 
(yellow), California myotis (purple), Eastern red (dark blue), Greater Bonneted (dark green), Indian myotis 
(cyan), Mexican free-tailed (red), Pallid (orange), Rafinesque’s big-eared (light green), and Western red (white).
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Extending DDS to Higher Dimensional Data Visualization 

Displaying DDS alpha-blended Layers on 3D Surfaces 

The experimental evaluation of DDS provides evidence that the DDS alpha-blended layers 

can be displayed on a non-planar surface with little surface interference with the DDS layers.  We 

know this because the DDS bump-mapped layers did not interfere with the DDS alpha-blended 

layers.  It is less clear whether the DDS alpha-blended layers would interfere with the perception of 

the underlying surface – task performance for the DDS bump map was affected by the distractor 

layers, but I believe that the problem was caused by applying multiple layers of bumps on top of other 

bumps and that there would not be a problem with one underlying surface.   

 

There are several examples of data that would be better viewed on the native terrain instead 

of on a flat surface.  The climate data set is a good example.  In Chapter One, which presents frost 

frequencies over North and South America for the months of February and August averaged during 

the ten year period between 1981 and 1990, the images show frost even in the summer months in 

areas of high elevation, such as the Andes and Rocky Mountains ranges.  The images would be more 

informative if the DDS layers were displayed directly on an elevation representation.  Figures 5.3 and 

5.4 show four climate variables – radiation (W/square meter) in yellow spots, vapor pressure  (hPa) in 

red spots, wet-day frequency (days) in green spots, and precipitation (millimeters) in blue – all are 

displayed over a shaded relief topographic map.  Figure 5.3 shows the averages for the month of 

February; Figure 5.4 shows the averages for the month of August. 

 

The bat habitat data would also be more informative if displayed over terrain, because it 

would then be possible to see how the different species distributions relate to elevation.  The AFM 

provides another good example, where the data is collected over a nanometer-resolution surface and 

would be better displayed directly on the original surface. 
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Figure 5.3:  Climate data for February displayed over a shaded relief of a topographic map.  Radiation 
(W/square meter) is shown in yellow spots, vapor pressure (hPa) is shown in red spots, wet-day frequency 
(days) is displayed with green spots, and precipitation (millimeters) is shown in blue. 
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Figure 5.4:  Climate data for August displayed over a shaded relief of a topographic map.  Radiation (W/square 
meter) is shown in yellow spots, vapor pressure (hPa) is shown in red spots, wet-day frequency (days) is 
displayed with green spots, and precipitation (millimeters) is shown in blue. 
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Visualization of Volume Data with DDS Alpha-Blended, Colored, 3D Gaussian Blobs 

Would the spatial sampling technique of DDS work for 3-dimensional volume data?  Instead 

of 2D Gaussians sampling 2D spatial data, 3D Gaussian blobs could be used to sample 3D volume 

data.  As the transparency of each pixel inside a Gaussian spot is determined by the value of the 

variable at that pixel, the transparency of each voxel inside a blob would be determined by the value 

at that voxel.  Where the data is high, the blob would be mostly opaque, and where the data is low, it 

would be mostly transparent.  Data outside the voxels sampled by the Gaussian blobs would not be 

displayed, allowing other variables to show through.  This technique could be used to display 

multiple intersecting 3-dimensional fields.  The blobs would have different colors to distinguish 

different variables measured on the volume.   

 

Consider as an example a multi-valued atmospheric data set, such as would be produced by a 

computer weather simulation.  At each point, one would have temperature, pressure, moisture 

content, wind direction, and wind velocity, etc.  Each atmospheric variable would be sampled in 3D 

with a 3D array of Gaussian blobs.  Within a 3D array of Gaussian blobs, each blob would have the 

same size and color.  The spacing would depend on the size of the blobs within the array, as for the 

2D array of Gaussians described in Chapter Two.  The size, color, and sample spacing of the 

Gaussians would be different among the different 3D arrays of Gaussians to distinguish among 

variables.  Sampling would be as for the 2D case:  where the value of the volume variable was low 

the Gaussian blob would be transparent, where the value of the volume variable was high, the 

Gaussian would be opaque. 

 

The number of different volumes we could see in such an image would likely be fewer than 

the number of layers for the 2D case.  User interaction would be important when viewing the volume 

visualization – the viewer would have to be able to rotate the volume and view it from different 

angles.  Animation of the underlying 3D Gaussian arrays through the volume would also be important 

to help the viewer see changes in the data values and to discriminate among variables. 
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Augmenting the DDS Visualization Toolkit  

Automatically Generating Best-Fit Mapping of DDS Alpha-Blended Display Parameters to Data 
Set 

There are two ways the DDS visualization toolkit could be augmented to help users with the 

task of finding the best mapping from data to display.  The first method is to develop an expert 

system, similar to the work reported in [Healey, Amant, and Elhaddad, 1998], that would search 

through the space of visualizations, creating potential data-to-feature mappings and automatically 

evaluating the result based on perceptual guidelines to limit visual interference.  The system they 

describe begins by asking the user to define the characteristics of their data and the type of analysis 

they would like to perform.  Healey et al.’s work provides an excellent example of how to make the 

user’s task easier as well as how to better teach the user about important perceptual cues relevant to 

visualization. 

 

A similar method would be the development of a genetic algorithm-type search of the DDS 

data visualization parameter space to produce visualizations of data.  Genetic algorithms are 

described in [Sims, 1991]; they provide a way of searching large feature spaces where the search is 

guided by fitness functions defined by the user.  Genetic algorithms could be used to search through 

the space of spot colors, densities, and sizes as well as layer orders for a given data set and the user 

would then select images that either show the data well, are esthetically pleasing, or both.  The 

process would repeat, using the selected images to guide future choices of data mappings.   

 

Even simple assistance could be useful if it were automatic.  For example, when creating a 

multilayer image I often want to swap the order the layers are applied, while keeping all other 

parameter settings the same.  This is something an automatic visualization could easily do that would 

make the task easier.  If I were presented with a series of images that differed only in the order the 

layers were applied I could easily select the one I preferred and proceed with creating the final image.  

This is just one example of how the parameter space can be explored with automatic help from an 

intelligent toolkit. 
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Final Remarks 

One question remains:  Is the DDS visualization technique useful?  I have shown that the 

technique works for binary data with simple shapes, and that it is significantly better than viewing the 

same data in separate side-by-side images.  I have shown examples of DDS images on a variety of 

data sets, all of which have unique characteristics.  What I would like to see next is people using DDS 

in practice, hearing what they think, and discovering new results when they put it to uses I never 

expected. 

 

This dissertation contains my observations, thoughts, and beliefs about how to display 

multivariate scientific data.  Many questions remain unanswered, and many new questions arise from 

the work presented here.  The path of this research leads not to one answer, but to a fork in the road 

from which many trails begin. 

 


